上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了 m次 以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学 1 号、 2 号、 3 号,并假设小蛮为 1 号,球传了 3 次回到小蛮手里的方式有 1->2->3->1 和 1->3->2->1 ,共 2 种。
一行,有两个用空格隔开的整数n,m(3 \le n \le 30,1 \le m \le 30)。
1个整数,表示符合题意的方法数。
3 3
2
40\% 的数据满足:3 \le n \le 30,1 \le m \le 20
100\% 的数据满足:3 \le n \le 30,1 \le m \le 30
2008普及组第三题
noip复赛 动态规划